Pre Trained Transformer
Pre-trained transformer models are foundational neural networks achieving state-of-the-art results across diverse tasks by leveraging massive datasets for initial training, followed by fine-tuning for specific applications. Current research emphasizes improving efficiency, including parameter reduction techniques like low-rank factorization and early exit strategies, and exploring effective transfer learning methods across modalities (e.g., image to video, text to speech). This work is significant because it enables the application of powerful transformer architectures to resource-constrained settings and expands their utility beyond their original training domains, impacting fields from natural language processing and computer vision to medical image analysis and even military strategy.
Papers
Pretraining task diversity and the emergence of non-Bayesian in-context learning for regression
Allan Raventós, Mansheej Paul, Feng Chen, Surya Ganguli
Constraint-aware and Ranking-distilled Token Pruning for Efficient Transformer Inference
Junyan Li, Li Lyna Zhang, Jiahang Xu, Yujing Wang, Shaoguang Yan, Yunqing Xia, Yuqing Yang, Ting Cao, Hao Sun, Weiwei Deng, Qi Zhang, Mao Yang
Diagnosing Transformers: Illuminating Feature Spaces for Clinical Decision-Making
Aliyah R. Hsu, Yeshwanth Cherapanamjeri, Briton Park, Tristan Naumann, Anobel Y. Odisho, Bin Yu
Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention Graph in Pre-Trained Transformers
Hongjie Wang, Bhishma Dedhia, Niraj K. Jha