Thought Reasoning
Thought reasoning in artificial intelligence focuses on enabling large language models (LLMs) to perform complex, multi-step reasoning tasks, mirroring human cognitive processes. Current research emphasizes improving the reliability and interpretability of LLM reasoning through techniques like chain-of-thought prompting, graph-based reasoning structures (e.g., Tree of Thoughts, Graph of Thoughts), and the integration of symbolic logic and code execution. These advancements are crucial for building more trustworthy and explainable AI systems, with significant implications for applications ranging from scientific discovery and medical diagnosis to improved decision-making in various fields.
Papers
December 16, 2022
October 11, 2022
September 16, 2022
June 7, 2022
March 29, 2022
March 21, 2022
March 16, 2022
November 16, 2021