Unsupervised Anomaly Detection
Unsupervised anomaly detection aims to identify unusual data points without relying on labeled examples, focusing on learning the characteristics of normal data to distinguish deviations. Current research emphasizes developing robust models using architectures like autoencoders, diffusion probabilistic models, and graph neural networks, often incorporating techniques such as test-time adaptation, knowledge distillation, and generative adversarial networks to improve accuracy and efficiency. This field is crucial for various applications, including medical image analysis, industrial quality control, and cybersecurity, where detecting rare events is critical but labeled data is scarce or expensive to obtain. The development of more efficient and interpretable methods remains a key focus.
Papers
StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact Context-encoding Variational Autoencoder
Soumick Chatterjee, Alessandro Sciarra, Max Dünnwald, Pavan Tummala, Shubham Kumar Agrawal, Aishwarya Jauhari, Aman Kalra, Steffen Oeltze-Jafra, Oliver Speck, Andreas Nürnberger
Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with Multi-Task Brain Age Prediction
Marcel Bengs, Finn Behrendt, Max-Heinrich Laves, Julia Krüger, Roland Opfer, Alexander Schlaefer