Paper ID: 2111.02115

Multistep traffic speed prediction: A deep learning based approach using latent space mapping considering spatio-temporal dependencies

Shatrughan Modi, Jhilik Bhattacharya, Prasenjit Basak

Traffic management in a city has become a major problem due to the increasing number of vehicles on roads. Intelligent Transportation System (ITS) can help the city traffic managers to tackle the problem by providing accurate traffic forecasts. For this, ITS requires a reliable traffic prediction algorithm that can provide accurate traffic prediction at multiple time steps based on past and current traffic data. In recent years, a number of different methods for traffic prediction have been proposed which have proved their effectiveness in terms of accuracy. However, most of these methods have either considered spatial information or temporal information only and overlooked the effect of other. In this paper, to address the above problem a deep learning based approach has been developed using both the spatial and temporal dependencies. To consider spatio-temporal dependencies, nearby road sensors at a particular instant are selected based on the attributes like traffic similarity and distance. Two pre-trained deep auto-encoders were cross-connected using the concept of latent space mapping and the resultant model was trained using the traffic data from the selected nearby sensors as input. The proposed deep learning based approach was trained using the real-world traffic data collected from loop detector sensors installed on different highways of Los Angeles and Bay Area. The traffic data is freely available from the web portal of the California Department of Transportation Performance Measurement System (PeMS). The effectiveness of the proposed approach was verified by comparing it with a number of machine/deep learning approaches. It has been found that the proposed approach provides accurate traffic prediction results even for 60-min ahead prediction with least error than other techniques.

Submitted: Nov 3, 2021