Paper ID: 2112.11833

Deep learning for brain metastasis detection and segmentation in longitudinal MRI data

Yixing Huang, Christoph Bert, Philipp Sommer, Benjamin Frey, Udo Gaipl, Luitpold V. Distel, Thomas Weissmann, Michael Uder, Manuel A. Schmidt, Arnd Dörfler, Andreas Maier, Rainer Fietkau, Florian Putz

Brain metastases occur frequently in patients with metastatic cancer. Early and accurate detection of brain metastases is very essential for treatment planning and prognosis in radiation therapy. To improve brain metastasis detection performance with deep learning, a custom detection loss called volume-level sensitivity-specificity (VSS) is proposed, which rates individual metastasis detection sensitivity and specificity in (sub-)volume levels. As sensitivity and precision are always a trade-off in a metastasis level, either a high sensitivity or a high precision can be achieved by adjusting the weights in the VSS loss without decline in dice score coefficient for segmented metastases. To reduce metastasis-like structures being detected as false positive metastases, a temporal prior volume is proposed as an additional input of DeepMedic. The modified network is called DeepMedic+ for distinction. Our proposed VSS loss improves the sensitivity of brain metastasis detection for DeepMedic, increasing the sensitivity from 85.3% to 97.5%. Alternatively, it improves the precision from 69.1% to 98.7%. Comparing DeepMedic+ with DeepMedic with the same VSS loss, 44.4% of the false positive metastases are reduced in the high sensitivity model and the precision reaches 99.6% for the high specificity model. The mean dice coefficient for all metastases is about 0.81. With the ensemble of the high sensitivity and high specificity models, on average only 1.5 false positive metastases per patient needs further check, while the majority of true positive metastases are confirmed. The ensemble learning is able to distinguish high confidence true positive metastases from metastases candidates that require special expert review or further follow-up, being particularly well-fit to the requirements of expert support in real clinical practice.

Submitted: Dec 22, 2021