Paper ID: 2202.03422

Development of a deep learning platform for optimising sheet stamping geometries subject to manufacturing constraints

Hamid Reza Attar, Alistair Foster, Nan Li

The latest sheet stamping processes enable efficient manufacturing of complex shape structural components that have high stiffness to weight ratios, but these processes can introduce defects. To assist component design for stamping processes, this paper presents a novel deep-learning-based platform for optimising 3D component geometries. The platform adopts a non-parametric modelling approach that is capable of optimising arbitrary geometries from multiple geometric parameterisation schema. This approach features the interaction of two neural networks: 1) a geometry generator and 2) a manufacturing performance evaluator. The generator predicts continuous 3D signed distance fields (SDFs) for geometries of different classes, and each SDF is conditioned on a latent vector. The zero-level-set of each SDF implicitly represents a generated geometry. Novel training strategies for the generator are introduced and include a new loss function which is tailored for sheet stamping applications. These strategies enable the differentiable generation of high quality, large scale component geometries with tight local features for the first time. The evaluator maps a 2D projection of these generated geometries to their post-stamping physical (e.g., strain) distributions. Manufacturing constraints are imposed based on these distributions and are used to formulate a novel objective function for optimisation. A new gradient-based optimisation technique is employed to iteratively update the latent vectors, and therefore geometries, to minimise this objective function and thus meet the manufacturing constraints. Case studies based on optimising box geometries subject to a sheet thinning constraint for a hot stamping process are presented and discussed. The results show that expressive geometric changes are achievable, and that these changes are driven by stamping performance.

Submitted: Feb 4, 2022