Paper ID: 2208.08739
Transcending XAI Algorithm Boundaries through End-User-Inspired Design
Weina Jin, Jianyu Fan, Diane Gromala, Philippe Pasquier, Xiaoxiao Li, Ghassan Hamarneh
The boundaries of existing explainable artificial intelligence (XAI) algorithms are confined to problems grounded in technical users' demand for explainability. This research paradigm disproportionately ignores the larger group of non-technical end users, who have a much higher demand for AI explanations in diverse explanation goals, such as making safer and better decisions and improving users' predicted outcomes. Lacking explainability-focused functional support for end users may hinder the safe and accountable use of AI in high-stakes domains, such as healthcare, criminal justice, finance, and autonomous driving systems. Built upon prior human factor analysis on end users' requirements for XAI, we identify and model four novel XAI technical problems covering the full spectrum from design to the evaluation of XAI algorithms, including edge-case-based reasoning, customizable counterfactual explanation, collapsible decision tree, and the verifiability metric to evaluate XAI utility. Based on these newly-identified research problems, we also discuss open problems in the technical development of user-centered XAI to inspire future research. Our work bridges human-centered XAI with the technical XAI community, and calls for a new research paradigm on the technical development of user-centered XAI for the responsible use of AI in critical tasks.
Submitted: Aug 18, 2022