Paper ID: 2208.09559
Neural network facilitated ab initio derivation of linear formula: A case study on formulating the relationship between DNA motifs and gene expression
Chengyu Liu, Wei Wang
Developing models with high interpretability and even deriving formulas to quantify relationships between biological data is an emerging need. We propose here a framework for ab initio derivation of sequence motifs and linear formula using a new approach based on the interpretable neural network model called contextual regression model. We showed that this linear model could predict gene expression levels using promoter sequences with a performance comparable to deep neural network models. We uncovered a list of 300 motifs with important regulatory roles on gene expression and showed that they also had significant contributions to cell-type specific gene expression in 154 diverse cell types. This work illustrates the possibility of deriving formulas to represent biology laws that may not be easily elucidated. (https://github.com/Wang-lab-UCSD/Motif_Finding_Contextual_Regression)
Submitted: Aug 19, 2022