Paper ID: 2209.08579

Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation

Yang Ni

Causal discovery for quantitative data has been extensively studied but less is known for categorical data. We propose a novel causal model for categorical data based on a new classification model, termed classification with optimal label permutation (COLP). By design, COLP is a parsimonious classifier, which gives rise to a provably identifiable causal model. A simple learning algorithm via comparing likelihood functions of causal and anti-causal models suffices to learn the causal direction. Through experiments with synthetic and real data, we demonstrate the favorable performance of the proposed COLP-based causal model compared to state-of-the-art methods. We also make available an accompanying R package COLP, which contains the proposed causal discovery algorithm and a benchmark dataset of categorical cause-effect pairs.

Submitted: Sep 18, 2022