Paper ID: 2302.02976

ConvoWaste: An Automatic Waste Segregation Machine Using Deep Learning

Md. Shahariar Nafiz, Shuvra Smaran Das, Md. Kishor Morol, Abdullah Al Juabir, Dip Nandi

Nowadays, proper urban waste management is one of the biggest concerns for maintaining a green and clean environment. An automatic waste segregation system can be a viable solution to improve the sustainability of the country and boost the circular economy. This paper proposes a machine to segregate waste into different parts with the help of a smart object detection algorithm using ConvoWaste in the field of deep convolutional neural networks (DCNN) and image processing techniques. In this paper, deep learning and image processing techniques are applied to precisely classify the waste, and the detected waste is placed inside the corresponding bins with the help of a servo motor-based system. This machine has the provision to notify the responsible authority regarding the waste level of the bins and the time to trash out the bins filled with garbage by using the ultrasonic sensors placed in each bin and the dual-band GSM-based communication technology. The entire system is controlled remotely through an Android app in order to dump the separated waste in the desired place thanks to its automation properties. The use of this system can aid in the process of recycling resources that were initially destined to become waste, utilizing natural resources, and turning these resources back into usable products. Thus, the system helps fulfill the criteria of a circular economy through resource optimization and extraction. Finally, the system is designed to provide services at a low cost while maintaining a high level of accuracy in terms of technological advancement in the field of artificial intelligence (AI). We have gotten 98% accuracy for our ConvoWaste deep learning model.

Submitted: Feb 6, 2023