Paper ID: 2302.11871

Deep learning reveals the common spectrum underlying multiple brain disorders in youth and elders from brain functional networks

Mianxin Liu, Jingyang Zhang, Yao Wang, Yan Zhou, Fang Xie, Qihao Guo, Feng Shi, Han Zhang, Qian Wang, Dinggang Shen

Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions. However, the key evidence from neuroimaging data for pathological commonness remains unrevealed. To explore this hypothesis, we build a deep learning model, using multi-site functional magnetic resonance imaging data (N=4,410, 6 sites), for classifying 5 different brain disorders from healthy controls, with a set of common features. Our model achieves 62.6(1.9)% overall classification accuracy on data from the 6 investigated sites and detects a set of commonly affected functional subnetworks at different spatial scales, including default mode, executive control, visual, and limbic networks. In the deep-layer feature representation for individual data, we observe young and aging patients with disorders are continuously distributed, which is in line with the clinical concept of the "spectrum of disorders". The revealed spectrum underlying early- and late-life brain disorders promotes the understanding of disorder comorbidities in the lifespan.

Submitted: Feb 23, 2023