Paper ID: 2310.06109

QR-Tag: Angular Measurement and Tracking with a QR-Design Marker

Simeng Qiu, Hadi Amata, Wolfgang Heidrich

Directional information measurement has many applications in domains such as robotics, virtual and augmented reality, and industrial computer vision. Conventional methods either require pre-calibration or necessitate controlled environments. The state-of-the-art MoireTag approach exploits the Moire effect and QR-design to continuously track the angular shift precisely. However, it is still not a fully QR code design. To overcome the above challenges, we propose a novel snapshot method for discrete angular measurement and tracking with scannable QR-design patterns that are generated by binary structures printed on both sides of a glass plate. The QR codes, resulting from the parallax effect due to the geometry alignment between two layers, can be readily measured as angular information using a phone camera. The simulation results show that the proposed non-contact object tracking framework is computationally efficient with high accuracy.

Submitted: Oct 9, 2023