Paper ID: 2408.08782
EmoDynamiX: Emotional Support Dialogue Strategy Prediction by Modelling MiXed Emotions and Discourse Dynamics
Chenwei Wan, Matthieu Labeau, ChloƩ Clavel
Designing emotionally intelligent conversational systems to provide comfort and advice to people experiencing distress is a compelling area of research. Previous efforts have focused on developing modular dialogue systems that treat socio-emotional strategy prediction as an auxiliary task and generate strategy-conditioned responses with customized decoders. Recently, with advancements in large language models (LLMs), end-to-end dialogue agents without explicit socio-emotional strategy prediction steps have become prevalent. However, despite their excellence in language generation, recent studies show that LLMs' inherent preference bias towards certain socio-emotional strategies hinders the delivery of high-quality emotional support. To address this challenge, we propose decoupling strategy prediction from language generation, and introduce a novel dialogue strategy predictor, EmoDynamiX, which models the discourse dynamics between user emotions and system strategies using a heterogeneous graph. Additionally, we make use of the Emotion Recognition in Conversations (ERC) task and design a flexible mixed-emotion module to capture fine-grained emotional states of the user. Experimental results on two ESC datasets show EmoDynamiX outperforms previous state-of-the-art methods with a significant margin.
Submitted: Aug 16, 2024