Paper ID: 2408.15248

AI-Powered Camera and Sensors for the Rehabilitation Hand Exoskeleton

Md Abdul Baset Sarker, Juan Pablo Sola-thomas, Masudul H. Imtiaz

Due to Motor Neurone Diseases, a large population remains disabled worldwide, negatively impacting their independence and quality of life. This typically involves a weakness in the hand and forearm muscles, making it difficult to perform fine motor tasks such as writing, buttoning a shirt, or gripping objects. This project presents a vision-enabled rehabilitation hand exoskeleton to assist disabled persons in their hand movements. The design goal was to create an accessible tool to help with a simple interface requiring no training. This prototype is built on a commercially available glove where a camera and embedded processor were integrated to help open and close the hand, using air pressure, thus grabbing an object. An accelerometer is also implemented to detect the characteristic hand gesture to release the object when desired. This passive vision-based control differs from active EMG-based designs as it does not require individualized training. Continuing the research will reduce the cost, weight, and power consumption to facilitate mass implementation.

Submitted: Aug 9, 2024