Paper ID: 2409.11921
Repeatable Energy-Efficient Perching for Flapping-Wing Robots Using Soft Grippers
Krispin C. V. Broers, Sophie F. Armanini
With the emergence of new flapping-wing micro aerial vehicle (FWMAV) designs, a need for extensive and advanced mission capabilities arises. FWMAVs try to adapt and emulate the flight features of birds and flying insects. While current designs already achieve high manoeuvrability, they still almost entirely lack perching and take-off abilities. These capabilities could, for instance, enable long-term monitoring and surveillance missions, and operations in cluttered environments or in proximity to humans and animals. We present the development and testing of a framework that enables repeatable perching and take-off for small to medium-sized FWMAVs, utilising soft, non-damaging grippers. Thanks to its novel active-passive actuation system, an energy-conserving state can be achieved and indefinitely maintained while the vehicle is perched. A prototype of the proposed system weighing under 39 g was manufactured and extensively tested on a 110 g flapping-wing robot. Successful free-flight tests demonstrated the full mission cycle of landing, perching and subsequent take-off. The telemetry data recorded during the flights yields extensive insight into the system's behaviour and is a valuable step towards full automation and optimisation of the entire take-off and landing cycle.
Submitted: Sep 18, 2024