Paper ID: 2410.11454
Nonlinear Gaussian process tomography with imposed non-negativity constraints on physical quantities for plasma diagnostics
Kenji Ueda, Masaki Nishiura
We propose a novel tomographic method, nonlinear Gaussian process tomography (nonlinear GPT) that employs the Laplace approximation to ensure the non-negative physical quantity, such as the emissivity of plasma optical diagnostics. This new method implements a logarithmic Gaussian process (log-GP) to model plasma distribution more naturally, thereby expanding the limitations of standard GPT, which are restricted to linear problems and may yield non-physical negative values. The effectiveness of the proposed log-GP tomography is demonstrated through a case study using the Ring Trap 1 (RT-1) device, where log-GPT outperforms existing methods, standard GPT, and the Minimum Fisher Information (MFI) methods in terms of reconstruction accuracy. The result highlights the effectiveness of nonlinear GPT for imposing physical constraints in applications to an inverse problem.
Submitted: Oct 15, 2024