Paper ID: 2410.17602
Integrating Large Language Models for UAV Control in Simulated Environments: A Modular Interaction Approach
Abhishek Phadke, Alihan Hadimlioglu, Tianxing Chu, Chandra N Sekharan
The intersection of LLMs (Large Language Models) and UAV (Unoccupied Aerial Vehicles) technology represents a promising field of research with the potential to enhance UAV capabilities significantly. This study explores the application of LLMs in UAV control, focusing on the opportunities for integrating advanced natural language processing into autonomous aerial systems. By enabling UAVs to interpret and respond to natural language commands, LLMs simplify the UAV control and usage, making them accessible to a broader user base and facilitating more intuitive human-machine interactions. The paper discusses several key areas where LLMs can impact UAV technology, including autonomous decision-making, dynamic mission planning, enhanced situational awareness, and improved safety protocols. Through a comprehensive review of current developments and potential future directions, this study aims to highlight how LLMs can transform UAV operations, making them more adaptable, responsive, and efficient in complex environments. A template development framework for integrating LLMs in UAV control is also described. Proof of Concept results that integrate existing LLM models and popular robotic simulation platforms are demonstrated. The findings suggest that while there are substantial technical and ethical challenges to address, integrating LLMs into UAV control holds promising implications for advancing autonomous aerial systems.
Submitted: Oct 23, 2024