Paper ID: 2411.16707

Enhancing LLMs for Power System Simulations: A Feedback-driven Multi-agent Framework

Mengshuo Jia, Zeyu Cui, Gabriela Hug

The integration of experimental technologies with large language models (LLMs) is transforming scientific research, positioning AI as a versatile research assistant rather than a mere problem-solving tool. In the field of power systems, however, managing simulations -- one of the essential experimental technologies -- remains a challenge for LLMs due to their limited domain-specific knowledge, restricted reasoning capabilities, and imprecise handling of simulation parameters. To address these limitations, we propose a feedback-driven, multi-agent framework that incorporates three proposed modules: an enhanced retrieval-augmented generation (RAG) module, an improved reasoning module, and a dynamic environmental acting module with an error-feedback mechanism. Validated on 69 diverse tasks from Daline and MATPOWER, this framework achieves success rates of 93.13% and 96.85%, respectively, significantly outperforming the latest LLMs (ChatGPT 4o and o1-preview), which achieved a 27.77% success rate on standard simulation tasks and 0% on complex tasks. Additionally, our framework also supports rapid, cost-effective task execution, completing each simulation in approximately 30 seconds at an average cost of 0.014 USD for tokens. Overall, this adaptable framework lays a foundation for developing intelligent LLM-based assistants for human researchers, facilitating power system research and beyond.

Submitted: Nov 21, 2024