Paper ID: 2501.07913

Governing AI Agents

Noam Kolt

The field of AI is undergoing a fundamental transition from systems that can produce synthetic content upon request to autonomous agents that can plan and execute complex tasks with only limited human involvement. Companies that pioneered the development of generative AI tools are now building AI agents that can be instructed to independently navigate the internet, perform a wide range of online tasks, and serve as artificial personal assistants and virtual coworkers. The opportunities presented by this new technology are tremendous, as are the associated risks. Fortunately, there exist robust analytic frameworks for confronting many of these challenges, namely, the economic theory of principal-agent problems and the common law doctrine of agency relationships. Drawing on these frameworks, this Article makes three contributions. First, it uses agency law and theory to identify and characterize problems arising from AI agents, including issues of information asymmetry, discretionary authority, and loyalty. Second, it illustrates the limitations of conventional solutions to agency problems: incentive design, monitoring, and enforcement might not be effective for governing AI agents that make uninterpretable decisions and operate at unprecedented speed and scale. Third, the Article explores the implications of agency law and theory for designing and regulating AI agents, arguing that new technical and legal infrastructure is needed to support governance principles of inclusivity, visibility, and liability.

Submitted: Jan 14, 2025