Generative Model
Generative models are artificial intelligence systems designed to create new data instances that resemble a training dataset, aiming to learn and replicate the underlying data distribution. Current research emphasizes improving efficiency and controllability, focusing on architectures like diffusion models, autoregressive models, and generative flow networks, as well as refining training algorithms and loss functions. These advancements have significant implications across diverse fields, enabling applications such as realistic image and music generation, protein design, and improved data augmentation techniques for various machine learning tasks.
Papers
CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation
Claudius Krause, Michele Faucci Giannelli, Gregor Kasieczka, Benjamin Nachman, Dalila Salamani, David Shih, Anna Zaborowska, Oz Amram, Kerstin Borras, Matthew R. Buckley, Erik Buhmann, Thorsten Buss, Renato Paulo Da Costa Cardoso, Anthony L. Caterini, Nadezda Chernyavskaya, Federico A.G. Corchia, Jesse C. Cresswell, Sascha Diefenbacher, Etienne Dreyer, Vijay Ekambaram, Engin Eren, Florian Ernst, Luigi Favaro, Matteo Franchini, Frank Gaede, Eilam Gross, Shih-Chieh Hsu, Kristina Jaruskova, Benno Käch, Jayant Kalagnanam, Raghav Kansal, Taewoo Kim, Dmitrii Kobylianskii, Anatolii Korol, William Korcari, Dirk Krücker, Katja Krüger, Marco Letizia, Shu Li, Qibin Liu, Xiulong Liu, Gabriel Loaiza-Ganem, Thandikire Madula, Peter McKeown, Isabell-A. Melzer-Pellmann, Vinicius Mikuni, Nam Nguyen, Ayodele Ore, Sofia Palacios Schweitzer, Ian Pang, Kevin Pedro, Tilman Plehn, Witold Pokorski, Huilin Qu, Piyush Raikwar, John A. Raine, Humberto Reyes-Gonzalez, Lorenzo Rinaldi, Brendan Leigh Ross, Moritz A.W. Scham, Simon Schnake, Chase Shimmin, Eli Shlizerman, Nathalie Soybelman, Mudhakar Srivatsa, Kalliopi Tsolaki, Sofia Vallecorsa, Kyongmin Yeo, Rui Zhang et al. (22 additional authors not shown) You must enabled JavaScript to view entire author list.
Accelerated, Robust Lower-Field Neonatal MRI with Generative Models
Yamin Arefeen, Brett Levac, Jonathan I. Tamir
LARP: Tokenizing Videos with a Learned Autoregressive Generative Prior
Hanyu Wang, Saksham Suri, Yixuan Ren, Hao Chen, Abhinav Shrivastava
Diff-Instruct*: Towards Human-Preferred One-step Text-to-image Generative Models
Weijian Luo, Colin Zhang, Debing Zhang, Zhengyang Geng
Scaling-based Data Augmentation for Generative Models and its Theoretical Extension
Yoshitaka Koike, Takumi Nakagawa, Hiroki Waida, Takafumi Kanamori
Your Image is Secretly the Last Frame of a Pseudo Video
Wenlong Chen, Wenlin Chen, Lapo Rastrelli, Yingzhen Li
GHIL-Glue: Hierarchical Control with Filtered Subgoal Images
Kyle B. Hatch, Ashwin Balakrishna, Oier Mees, Suraj Nair, Seohong Park, Blake Wulfe, Masha Itkina, Benjamin Eysenbach, Sergey Levine, Thomas Kollar, Benjamin Burchfiel
Privacy without Noisy Gradients: Slicing Mechanism for Generative Model Training
Kristjan Greenewald, Yuancheng Yu, Hao Wang, Kai Xu
Generative Diffusion Models for Sequential Recommendations
Sharare Zolghadr, Ole Winther, Paul Jeha
A prescriptive theory for brain-like inference
Hadi Vafaii, Dekel Galor, Jacob L. Yates
No Free Lunch: Fundamental Limits of Learning Non-Hallucinating Generative Models
Changlong Wu, Ananth Grama, Wojciech Szpankowski
Label Set Optimization via Activation Distribution Kurtosis for Zero-shot Classification with Generative Models
Yue Li, Zhixue Zhao, Carolina Scarton
Unbounded: A Generative Infinite Game of Character Life Simulation
Jialu Li, Yuanzhen Li, Neal Wadhwa, Yael Pritch, David E. Jacobs, Michael Rubinstein, Mohit Bansal, Nataniel Ruiz
Rectified Diffusion Guidance for Conditional Generation
Mengfei Xia, Nan Xue, Yujun Shen, Ran Yi, Tieliang Gong, Yong-Jin Liu