Graph Learning
Graph learning focuses on developing algorithms and models to analyze and learn from data represented as graphs, aiming to extract meaningful patterns and insights from complex relationships between entities. Current research emphasizes addressing challenges like heterophily (dissimilar nodes being connected), improving scalability for large graphs, and enhancing model interpretability, often employing graph neural networks (GNNs), graph transformers, and federated learning techniques. These advancements have significant implications for various fields, including social network analysis, drug discovery, and recommendation systems, by enabling more accurate predictions and a deeper understanding of complex interconnected systems.
Papers
January 7, 2024
December 31, 2023
December 28, 2023
December 22, 2023
December 18, 2023
December 8, 2023
December 7, 2023
December 1, 2023
November 24, 2023
November 20, 2023
November 9, 2023
November 7, 2023
November 5, 2023
October 29, 2023
October 23, 2023
October 18, 2023
October 17, 2023
October 11, 2023