Graphical Model
Graphical models represent complex relationships between variables using graphs, aiming to infer conditional dependencies and causal structures from data. Current research emphasizes developing efficient algorithms for inference and structure learning in high-dimensional settings, particularly focusing on methods like graphical Lasso, alternating direction method of multipliers (ADMM), and variations of greedy equivalence search, often incorporating fairness considerations and handling incomplete data via techniques such as optimal transport. These advancements improve the accuracy, interpretability, and scalability of graphical models, impacting diverse fields including machine learning, causal inference, and financial modeling.
Papers
December 8, 2022
December 2, 2022
November 21, 2022
October 27, 2022
October 21, 2022
October 20, 2022
October 11, 2022
September 24, 2022
September 5, 2022
September 3, 2022
September 2, 2022
August 24, 2022
July 21, 2022
June 27, 2022
June 9, 2022
May 6, 2022
February 28, 2022
December 15, 2021
December 6, 2021