Hidden CoST
Hidden CoST research focuses on optimizing the trade-off between the performance and resource consumption of various computational models and algorithms. Current efforts concentrate on developing cost-effective alternatives to expensive models like GPT-4, exploring efficient architectures for specific applications (e.g., IoT security, automatic speech recognition), and improving the efficiency of existing methods through techniques such as active learning, ensemble selection, and early stopping. This work is significant because it addresses the critical need for resource-efficient solutions in diverse fields, ranging from AI model training and deployment to resource-constrained IoT devices and automated machine learning.
Papers
BAdaCost: Multi-class Boosting with Costs
Antonio Fernández-Baldera, José M. Buenaposada, Luis Baumela
Reducing the Cost of Quantum Chemical Data By Backpropagating Through Density Functional Theory
Alexander Mathiasen, Hatem Helal, Paul Balanca, Adam Krzywaniak, Ali Parviz, Frederik Hvilshøj, Blazej Banaszewski, Carlo Luschi, Andrew William Fitzgibbon