Neural Tangent Kernel
The Neural Tangent Kernel (NTK) framework provides a powerful analytical tool for understanding the training dynamics of wide neural networks, essentially treating them as kernel methods in the infinite-width limit. Current research focuses on applying NTK to analyze various model architectures and training algorithms, including variational autoencoders, federated learning, and physics-informed neural networks, investigating issues like spectral bias, convergence rates, and generalization performance. This work offers valuable insights into the optimization and generalization properties of deep learning models, potentially leading to improved training strategies and a deeper understanding of their behavior.
Papers
Faithful and Efficient Explanations for Neural Networks via Neural Tangent Kernel Surrogate Models
Andrew Engel, Zhichao Wang, Natalie S. Frank, Ioana Dumitriu, Sutanay Choudhury, Anand Sarwate, Tony Chiang
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas, David Holzmüller, Ulrike von Luxburg, Ingo Steinwart