New Initialization
New initialization techniques for neural networks aim to improve training efficiency, stability, and generalization performance by carefully selecting initial model parameters. Current research focuses on developing methods tailored to specific architectures like transformers and diffusion models, often leveraging techniques such as reparameterization, knowledge factorization, and adaptive segmentation to optimize initialization for various tasks, including image generation, natural language processing, and visual navigation. These advancements are significant because they can lead to faster training, reduced computational costs, and improved model accuracy across a wide range of applications.
Papers
June 23, 2022
June 6, 2022
May 10, 2022
April 15, 2022
March 5, 2022
March 4, 2022
February 26, 2022
February 24, 2022
February 16, 2022
February 1, 2022
January 28, 2022
January 27, 2022
January 5, 2022
November 23, 2021