Segment Anything Model
The Segment Anything Model (SAM) is a foundational model for image segmentation, aiming to provide a universal solution capable of segmenting any object in any image with minimal user input. Current research focuses on improving SAM's efficiency for resource-constrained environments, adapting it to specific domains like medical imaging and video, and exploring its use in conjunction with other models, such as large language models, for more complex tasks. SAM's strong zero-shot generalization capabilities and flexibility in prompt types are revolutionizing image segmentation, impacting fields ranging from medical diagnosis to autonomous driving through improved annotation efficiency and task performance.
Papers
Zero-Shot Edge Detection with SCESAME: Spectral Clustering-based Ensemble for Segment Anything Model Estimation
Hiroaki Yamagiwa, Yusuke Takase, Hiroyuki Kambe, Ryosuke Nakamoto
SamDSK: Combining Segment Anything Model with Domain-Specific Knowledge for Semi-Supervised Learning in Medical Image Segmentation
Yizhe Zhang, Tao Zhou, Shuo Wang, Ye Wu, Pengfei Gu, Danny Z. Chen