Sparse Reward Environment
Sparse reward environments, characterized by infrequent or delayed feedback signals, pose a significant challenge for reinforcement learning (RL) agents. Current research focuses on improving exploration strategies through intrinsic rewards (e.g., novelty-based methods, information-theoretic approaches), hierarchical RL architectures to decompose complex tasks, and leveraging auxiliary models like vision-language models to provide richer reward signals. These advancements aim to enhance sample efficiency and enable RL agents to solve complex, real-world problems where dense reward functions are impractical or impossible to design, impacting fields like robotics and human-computer interaction.
Papers
Enhanced Meta Reinforcement Learning using Demonstrations in Sparse Reward Environments
Desik Rengarajan, Sapana Chaudhary, Jaewon Kim, Dileep Kalathil, Srinivas Shakkottai
Learning GFlowNets from partial episodes for improved convergence and stability
Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Nica, Tom Bosc, Yoshua Bengio, Nikolay Malkin