Paper ID: 2206.03430

Robot Self-Calibration Using Actuated 3D Sensors

Arne Peters

Both, robot and hand-eye calibration haven been object to research for decades. While current approaches manage to precisely and robustly identify the parameters of a robot's kinematic model, they still rely on external devices, such as calibration objects, markers and/or external sensors. Instead of trying to fit the recorded measurements to a model of a known object, this paper treats robot calibration as an offline SLAM problem, where scanning poses are linked to a fixed point in space by a moving kinematic chain. As such, the presented framework allows robot calibration using nothing but an arbitrary eye-in-hand depth sensor, thus enabling fully autonomous self-calibration without any external tools. My new approach is utilizes a modified version of the Iterative Closest Point algorithm to run bundle adjustment on multiple 3D recordings estimating the optimal parameters of the kinematic model. A detailed evaluation of the system is shown on a real robot with various attached 3D sensors. The presented results show that the system reaches precision comparable to a dedicated external tracking system at a fraction of its cost.

Submitted: Jun 7, 2022