Paper ID: 2401.02429
Brain-Inspired Spiking Neural Networks for Industrial Fault Diagnosis: A Survey, Challenges, and Opportunities
Huan Wang, Yan-Fu Li, Konstantinos Gryllias
In recent decades, Industrial Fault Diagnosis (IFD) has emerged as a crucial discipline concerned with detecting and gathering vital information about industrial equipment's health condition, thereby facilitating the identification of failure types and severities. The pursuit of precise and effective fault recognition has garnered substantial attention, culminating in a focus on automating equipment monitoring to preclude safety accidents and reduce reliance on human labor. The advent of artificial neural networks (ANNs) has been instrumental in augmenting intelligent IFD algorithms, particularly in the context of big data. Despite these advancements, ANNs, being a simplified biomimetic neural network model, exhibit inherent limitations such as resource and data dependencies and restricted cognitive capabilities. To address these limitations, the third-generation Spiking Neural Network (SNN), founded on principles of Brain-inspired computing, has surfaced as a promising alternative. The SNN, characterized by its biological neuron dynamics and spiking information encoding, demonstrates exceptional potential in representing spatiotemporal features. Consequently, developing SNN-based IFD models has gained momentum, displaying encouraging performance. Nevertheless, this field lacks systematic surveys to illustrate the current situation, challenges, and future directions. Therefore, this paper systematically reviews the theoretical progress of SNN-based models to answer the question of what SNN is. Subsequently, it reviews and analyzes existing SNN-based IFD models to explain why SNN needs to be used and how to use it. More importantly, this paper systematically answers the challenges, solutions, and opportunities of SNN in IFD.
Submitted: Nov 13, 2023