Paper ID: 2405.09365
SARatrX: Towards Building A Foundation Model for SAR Target Recognition
Weijie Li, Wei Yang, Yuenan Hou, Li Liu, Yongxiang Liu, Xiang Li
Despite the remarkable progress in synthetic aperture radar automatic target recognition (SAR ATR), recent efforts have concentrated on the detection or classification of a specific and coarse category, e.g., vehicles, ships, airplanes, or buildings. One of the fundamental limitations of the top-performing SAR ATR methods is that the learning paradigm is supervised, task-specific, limited-category, closed-world learning, which depends on massive amounts of accurately annotated samples that are expensively labeled by expert SAR analysts and has limited generalization capability and scalability. In this work, we make the first attempt towards building a foundation model for SAR ATR, termed SARatrX. SARatrX learns generalizable representations via self-supervised learning (SSL) and provides a basis for label-efficient model adaptation to generic SAR target detection and classification tasks. Specifically, SARatrX is trained on 0.18 M unlabelled SAR target samples, which are curated by combining contemporary benchmarks and constitute the largest publicly available dataset till now. Considering the characteristics of SAR images, a backbone tailored for SAR ATR is carefully designed, and a two-step SSL method endowed with multi-scale gradient features was applied to ensure the feature diversity and model scalability of SARatrX. The capabilities of SARatrX are evaluated on classification under few-shot and robustness settings and detection across various categories and scenes, and impressive performance is achieved, often competitive with or even superior to prior fully supervised, semi-supervised, or self-supervised algorithms. Our SARatrX and the curated dataset are released at this https URL to foster research into foundation models for SAR ATR and SAR image interpretation.
Submitted: May 15, 2024