Paper ID: 2405.19340
Obtaining physical layer data of latest generation networks for investigating adversary attacks
M. V. Ushakova, Yu. A. Ushakov, L. V. Legashev
The field of machine learning is developing rapidly and is being used in various fields of science and technology. In this way, machine learning can be used to optimize the functions of latest generation data networks such as 5G and 6G. This also applies to functions at a lower level. A feature of the use of machine learning in the radio path for targeted radiation generation in modern ultra-massive MIMO, reconfigurable intelligent interfaces and other technologies is the complex acquisition and processing of data from the physical layer. Additionally, adversarial measures that manipulate the behaviour of intelligent machine learning models are becoming a major concern, as many machine learning models are sensitive to incorrect input data. To obtain data on attacks directly from processing service information, a simulation model is proposed that works in conjunction with machine learning applications.
Submitted: May 2, 2024