Paper ID: 2405.19609

SMPLX-Lite: A Realistic and Drivable Avatar Benchmark with Rich Geometry and Texture Annotations

Yujiao Jiang, Qingmin Liao, Zhaolong Wang, Xiangru Lin, Zongqing Lu, Yuxi Zhao, Hanqing Wei, Jingrui Ye, Yu Zhang, Zhijing Shao

Recovering photorealistic and drivable full-body avatars is crucial for numerous applications, including virtual reality, 3D games, and tele-presence. Most methods, whether reconstruction or generation, require large numbers of human motion sequences and corresponding textured meshes. To easily learn a drivable avatar, a reasonable parametric body model with unified topology is paramount. However, existing human body datasets either have images or textured models and lack parametric models which fit clothes well. We propose a new parametric model SMPLX-Lite-D, which can fit detailed geometry of the scanned mesh while maintaining stable geometry in the face, hand and foot regions. We present SMPLX-Lite dataset, the most comprehensive clothing avatar dataset with multi-view RGB sequences, keypoints annotations, textured scanned meshes, and textured SMPLX-Lite-D models. With the SMPLX-Lite dataset, we train a conditional variational autoencoder model that takes human pose and facial keypoints as input, and generates a photorealistic drivable human avatar.

Submitted: May 30, 2024