Paper ID: 2409.17280
Disco4D: Disentangled 4D Human Generation and Animation from a Single Image
Hui En Pang, Shuai Liu, Zhongang Cai, Lei Yang, Tianwei Zhang, Ziwei Liu
We present \textbf{Disco4D}, a novel Gaussian Splatting framework for 4D human generation and animation from a single image. Different from existing methods, Disco4D distinctively disentangles clothings (with Gaussian models) from the human body (with SMPL-X model), significantly enhancing the generation details and flexibility. It has the following technical innovations. \textbf{1)} Disco4D learns to efficiently fit the clothing Gaussians over the SMPL-X Gaussians. \textbf{2)} It adopts diffusion models to enhance the 3D generation process, \textit{e.g.}, modeling occluded parts not visible in the input image. \textbf{3)} It learns an identity encoding for each clothing Gaussian to facilitate the separation and extraction of clothing assets. Furthermore, Disco4D naturally supports 4D human animation with vivid dynamics. Extensive experiments demonstrate the superiority of Disco4D on 4D human generation and animation tasks. Our visualizations can be found in \url{this https URL}.
Submitted: Sep 25, 2024