Paper ID: 2412.17252

A Coalition Game for On-demand Multi-modal 3D Automated Delivery System

Farzan Moosavi, Bilal Farooq

We introduce a multi-modal autonomous delivery optimization framework as a coalition game for a fleet of UAVs and ADRs operating in two overlaying networks to address last-mile delivery in urban environments, including high-density areas, road-based routing, and real-world operational challenges. The problem is defined as multiple depot pickup and delivery with time windows constrained over operational restrictions, such as vehicle battery limitation, precedence time window, and building obstruction. Subsequently, the coalition game theory is applied to investigate cooperation structures among the modes to capture how strategic collaboration among vehicles can improve overall routing efficiency. To do so, a generalized reinforcement learning model is designed to evaluate the cost-sharing and allocation to different coalitions for which sub-additive property and non-empty core exist. Our methodology leverages an end-to-end deep multi-agent policy gradient method augmented by a novel spatio-temporal adjacency neighbourhood graph attention network and transformer architecture using a heterogeneous edge-enhanced attention model. Conducting several numerical experiments on last-mile delivery applications, the result from the case study in the city of Mississauga shows that despite the incorporation of an extensive network in the graph for two modes and a complex training structure, the model addresses realistic operational constraints and achieves high-quality solutions compared with the existing transformer-based and heuristics methods and can perform well on non-homogeneous data distribution, generalizes well on the different scale and configuration, and demonstrate a robust performance under stochastic scenarios subject to wind speed and direction.

Submitted: Dec 23, 2024