Challenge Task
Challenge tasks in computer vision, audio processing, and natural language processing drive advancements by focusing research efforts on specific, well-defined problems. Current research emphasizes developing robust and efficient models, often employing deep learning architectures like transformers, convolutional neural networks, and variational autoencoders, to improve performance metrics such as accuracy, efficiency, and generalization across diverse datasets and conditions. These challenges yield valuable benchmark datasets and innovative solutions with significant implications for various applications, including medical imaging, video enhancement, speech technology, and AI safety.
Papers
The Multimodal Information Based Speech Processing (MISP) 2023 Challenge: Audio-Visual Target Speaker Extraction
Shilong Wu, Chenxi Wang, Hang Chen, Yusheng Dai, Chenyue Zhang, Ruoyu Wang, Hongbo Lan, Jun Du, Chin-Hui Lee, Jingdong Chen, Shinji Watanabe, Sabato Marco Siniscalchi, Odette Scharenborg, Zhong-Qiu Wang, Jia Pan, Jianqing Gao
Fine-tune the pretrained ATST model for sound event detection
Nian Shao, Xian Li, Xiaofei Li
The 2023 Video Similarity Dataset and Challenge
Ed Pizzi, Giorgos Kordopatis-Zilos, Hiral Patel, Gheorghe Postelnicu, Sugosh Nagavara Ravindra, Akshay Gupta, Symeon Papadopoulos, Giorgos Tolias, Matthijs Douze
Few-shot bioacoustic event detection at the DCASE 2023 challenge
Ines Nolasco, Burooj Ghani, Shubhr Singh, Ester Vidaña-Vila, Helen Whitehead, Emily Grout, Michael Emmerson, Frants Jensen, Ivan Kiskin, Joe Morford, Ariana Strandburg-Peshkin, Lisa Gill, Hanna Pamuła, Vincent Lostanlen, Dan Stowell