MNIST Dataset
The MNIST dataset, a collection of handwritten digits, serves as a benchmark for evaluating machine learning models, particularly in image classification. Current research focuses on improving model accuracy, interpretability, and efficiency using various architectures like convolutional neural networks, spiking neural networks, and even weightless neural networks, along with techniques such as feature selection and adversarial robustness improvements. The dataset's widespread use facilitates comparisons across different algorithms and allows for the development of novel methods for handling challenges like out-of-distribution data and imbalanced datasets, contributing significantly to the advancement of machine learning techniques.
Papers
When Do Neural Nets Outperform Boosted Trees on Tabular Data?
Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Benjamin Feuer, Chinmay Hegde, Ganesh Ramakrishnan, Micah Goldblum, Colin White
A Comparative Study of GAN-Generated Handwriting Images and MNIST Images using t-SNE Visualization
Okan Düzyel