Question Answering
Question answering (QA) research aims to develop systems that accurately and efficiently respond to diverse questions posed in natural language. Current efforts focus on improving the robustness and efficiency of QA models, particularly in handling long contexts, ambiguous queries, and knowledge conflicts, often leveraging large language models (LLMs) and retrieval-augmented generation (RAG) architectures. These advancements are significant for various applications, including information retrieval, conversational AI, and educational tools, driving improvements in both the accuracy and accessibility of information.
Papers
Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation
Sirui Xia, Xintao Wang, Jiaqing Liang, Yifei Zhang, Weikang Zhou, Jiaji Deng, Fei Yu, Yanghua Xiao
Searching for Best Practices in Retrieval-Augmented Generation
Xiaohua Wang, Zhenghua Wang, Xuan Gao, Feiran Zhang, Yixin Wu, Zhibo Xu, Tianyuan Shi, Zhengyuan Wang, Shizheng Li, Qi Qian, Ruicheng Yin, Changze Lv, Xiaoqing Zheng, Xuanjing Huang
FoRAG: Factuality-optimized Retrieval Augmented Generation for Web-enhanced Long-form Question Answering
Tianchi Cai, Zhiwen Tan, Xierui Song, Tao Sun, Jiyan Jiang, Yunqi Xu, Yinger Zhang, Jinjie Gu
Comparison of Open-Source and Proprietary LLMs for Machine Reading Comprehension: A Practical Analysis for Industrial Applications
Mahaman Sanoussi Yahaya Alassan, Jessica López Espejel, Merieme Bouhandi, Walid Dahhane, El Hassane Ettifouri
RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content
Joao Monteiro, Pierre-Andre Noel, Etienne Marcotte, Sai Rajeswar, Valentina Zantedeschi, David Vazquez, Nicolas Chapados, Christopher Pal, Perouz Taslakian
Boosting Scientific Concepts Understanding: Can Analogy from Teacher Models Empower Student Models?
Siyu Yuan, Cheng Jiayang, Lin Qiu, Deqing Yang