Recommendation System
Recommendation systems aim to predict user preferences and provide personalized suggestions, primarily focusing on improving accuracy, diversity, and efficiency. Current research emphasizes incorporating diverse data sources (text, images, location, user interactions across platforms) into sophisticated models, including transformer networks, graph neural networks, and large language models, often within federated learning frameworks to address privacy concerns. These advancements are crucial for enhancing user experience across various applications (e-commerce, social media, search engines) and for developing more robust, explainable, and bias-mitigated systems.
Papers
Large Language Model Driven Recommendation
Anton Korikov, Scott Sanner, Yashar Deldjoo, Zhankui He, Julian McAuley, Arnau Ramisa, Rene Vidal, Mahesh Sathiamoorthy, Atoosa Kasrizadeh, Silvia Milano, Francesco Ricci
Analytical and Empirical Study of Herding Effects in Recommendation Systems
Hong Xie, Mingze Zhong, Defu Lian, Zhen Wang, Enhong Chen