Yes No Question
Research on question answering (QA) focuses on enabling computer systems to accurately and comprehensively respond to diverse question types, moving beyond simple keyword matching to nuanced understanding of context and intent. Current efforts concentrate on improving the robustness of large language models (LLMs) and retrieval-augmented generation (RAG) systems, particularly addressing challenges like ambiguity, hallucination, and the handling of complex, multi-hop reasoning across various data sources (text, tables, knowledge graphs, and even audio). This work is significant for advancing natural language processing and holds substantial implications for applications ranging from improved search engines and chatbots to automated report generation in specialized domains like healthcare and finance.
Papers
TimelineQA: A Benchmark for Question Answering over Timelines
Wang-Chiew Tan, Jane Dwivedi-Yu, Yuliang Li, Lambert Mathias, Marzieh Saeidi, Jing Nathan Yan, Alon Y. Halevy
Enhancing Programming eTextbooks with ChatGPT Generated Counterfactual-Thinking-Inspired Questions
Arun Balajiee Lekshmi Narayanan, Rully Agus Hendrawan, Venktesh V