Arbitrary Object
Arbitrary object processing in computer vision aims to develop algorithms capable of understanding, manipulating, and reasoning about objects of any type, regardless of prior knowledge or training data. Current research focuses on developing robust models, often leveraging transformer architectures and diffusion models, to achieve accurate object detection, segmentation, pose estimation, and manipulation in diverse and complex scenes, including those with occlusions and interactions between multiple objects. These advancements are crucial for progress in robotics, autonomous systems, and augmented/virtual reality applications, enabling more flexible and adaptable interactions with the physical world. Furthermore, the development of efficient and generalizable methods for arbitrary object processing is driving innovation in self-supervised learning and knowledge distillation techniques.
Papers
Hyperbolic Contrastive Learning for Visual Representations beyond Objects
Songwei Ge, Shlok Mishra, Simon Kornblith, Chun-Liang Li, David Jacobs
GRiT: A Generative Region-to-text Transformer for Object Understanding
Jialian Wu, Jianfeng Wang, Zhengyuan Yang, Zhe Gan, Zicheng Liu, Junsong Yuan, Lijuan Wang
Robotic Assembly Control Reconfiguration Based on Transfer Reinforcement Learning for Objects with Different Geometric Features
Yuhang Gai, Bing Wang, Jiwen Zhang, Dan Wu, Ken Chen
Domain Adaptive Video Semantic Segmentation via Cross-Domain Moving Object Mixing
Kyusik Cho, Suhyeon Lee, Hongje Seong, Euntai Kim