Brain Tumor
Brain tumor research focuses on improving the accuracy and efficiency of diagnosis and treatment planning, primarily using magnetic resonance imaging (MRI). Current research emphasizes the development of sophisticated deep learning models, including convolutional neural networks (CNNs), vision transformers, and hybrid architectures incorporating attention mechanisms, to analyze multi-modal MRI data and perform tasks such as tumor segmentation and classification. These advancements aim to improve diagnostic accuracy, personalize treatment strategies, and ultimately enhance patient outcomes, impacting both clinical practice and the broader medical imaging field.
Papers
Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI
Xiaofeng Liu, Helen A. Shih, Fangxu Xing, Emiliano Santarnecchi, Georges El Fakhri, Jonghye Woo
The Brain Tumor Segmentation (BraTS) Challenge 2023: Glioma Segmentation in Sub-Saharan Africa Patient Population (BraTS-Africa)
Maruf Adewole, Jeffrey D. Rudie, Anu Gbadamosi, Oluyemisi Toyobo, Confidence Raymond, Dong Zhang, Olubukola Omidiji, Rachel Akinola, Mohammad Abba Suwaid, Adaobi Emegoakor, Nancy Ojo, Kenneth Aguh, Chinasa Kalaiwo, Gabriel Babatunde, Afolabi Ogunleye, Yewande Gbadamosi, Kator Iorpagher, Evan Calabrese, Mariam Aboian, Marius Linguraru, Jake Albrecht, Benedikt Wiestler, Florian Kofler, Anastasia Janas, Dominic LaBella, Anahita Fathi Kzerooni, Hongwei Bran Li, Juan Eugenio Iglesias, Keyvan Farahani, James Eddy, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Ariana Familiar, Koen Van Leemput, Christina Bukas, Maire Piraud, Gian-Marco Conte, Elaine Johansson, Zeke Meier, Bjoern H Menze, Ujjwal Baid, Spyridon Bakas, Farouk Dako, Abiodun Fatade, Udunna C Anazodo