Distribution Shift
Distribution shift, the discrepancy between training and deployment data distributions, is a critical challenge in machine learning, hindering model generalization and reliability. Current research focuses on developing methods to detect, adapt to, and mitigate the impact of various shift types (e.g., covariate, concept, label, and performative shifts), employing techniques like data augmentation, model retraining with regularization, and adaptive normalization. These advancements are crucial for improving the robustness and trustworthiness of machine learning models across diverse real-world applications, particularly in safety-critical domains like healthcare and autonomous driving, where unexpected performance degradation can have significant consequences.
Papers
AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly Detection
Marius Dragoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, Florin Brad
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
Andrey Malinin, Andreas Athanasopoulos, Muhamed Barakovic, Meritxell Bach Cuadra, Mark J. F. Gales, Cristina Granziera, Mara Graziani, Nikolay Kartashev, Konstantinos Kyriakopoulos, Po-Jui Lu, Nataliia Molchanova, Antonis Nikitakis, Vatsal Raina, Francesco La Rosa, Eli Sivena, Vasileios Tsarsitalidis, Efi Tsompopoulou, Elena Volf
GSCLIP : A Framework for Explaining Distribution Shifts in Natural Language
Zhiying Zhu, Weixin Liang, James Zou