Drug Discovery
Drug discovery, the process of identifying and developing new therapeutic agents, is being revolutionized by artificial intelligence. Current research focuses on improving the accuracy and efficiency of computational models for predicting molecular properties, drug-target interactions, and pharmacokinetics, employing techniques like graph neural networks, transformers, and diffusion models, often enhanced by self-supervised learning and multi-task learning strategies. These advancements aim to accelerate the lengthy and expensive drug development pipeline, ultimately leading to faster identification of effective and safer drugs. The integration of large language models and quantum computing further expands the possibilities for innovative drug design and discovery.
Papers
Reinforcement Learning for Personalized Drug Discovery and Design for Complex Diseases: A Systems Pharmacology Perspective
Ryan K. Tan, Yang Liu, Lei Xie
AlphaFold Accelerates Artificial Intelligence Powered Drug Discovery: Efficient Discovery of a Novel Cyclin-dependent Kinase 20 (CDK20) Small Molecule Inhibitor
Feng Ren, Xiao Ding, Min Zheng, Mikhail Korzinkin, Xin Cai, Wei Zhu, Alexey Mantsyzov, Alex Aliper, Vladimir Aladinskiy, Zhongying Cao, Shanshan Kong, Xi Long, Bonnie Hei Man Liu, Yingtao Liu, Vladimir Naumov, Anastasia Shneyderman, Ivan V. Ozerov, Ju Wang, Frank W. Pun, Alan Aspuru-Guzik, Michael Levitt, Alex Zhavoronkov