Gameplay Video
Gameplay video analysis is a rapidly evolving field focused on extracting meaningful information and insights from video recordings of gameplay. Current research emphasizes developing AI models, often employing transformer architectures, convolutional neural networks, and recurrent neural networks, to perform tasks such as action recognition, pose estimation, emotion detection, and event segmentation within video sequences. These advancements are driving progress in areas like player experience modeling, video editing and generation, and even applications in healthcare (e.g., pain recognition and ADHD diagnosis) by leveraging the rich spatiotemporal data inherent in gameplay videos. The resulting techniques have significant implications for improving game design, enhancing user experience, and creating new possibilities for human-computer interaction.
Papers
Distilling Vision-Language Models on Millions of Videos
Yue Zhao, Long Zhao, Xingyi Zhou, Jialin Wu, Chun-Te Chu, Hui Miao, Florian Schroff, Hartwig Adam, Ting Liu, Boqing Gong, Philipp Krähenbühl, Liangzhe Yuan
Face-GPS: A Comprehensive Technique for Quantifying Facial Muscle Dynamics in Videos
Juni Kim, Zhikang Dong, Pawel Polak