Open World
Open-world research focuses on developing AI systems capable of operating in unpredictable, dynamic environments with unknown objects and situations, unlike traditional closed-world systems with predefined constraints. Current research emphasizes robust generalization and zero-shot capabilities, often employing vision-language models (VLMs), large language models (LLMs), and novel algorithms like contrastive learning and self-supervised learning to handle unseen data and concepts. This work is crucial for advancing AI's real-world applicability, particularly in robotics, autonomous driving, and other safety-critical domains requiring adaptability and resilience to unexpected events.
Papers
RAPid-Learn: A Framework for Learning to Recover for Handling Novelties in Open-World Environments
Shivam Goel, Yash Shukla, Vasanth Sarathy, Matthias Scheutz, Jivko Sinapov
ZSON: Zero-Shot Object-Goal Navigation using Multimodal Goal Embeddings
Arjun Majumdar, Gunjan Aggarwal, Bhavika Devnani, Judy Hoffman, Dhruv Batra