Unsupervised Learning
Unsupervised learning aims to extract meaningful patterns and structures from unlabeled data, addressing the limitations of supervised methods that require extensive labeled datasets. Current research focuses on developing robust algorithms and model architectures, such as autoencoders, generative models (like Gaussian Mixture Models), and contrastive learning approaches, to improve clustering, anomaly detection, and representation learning. These advancements are impacting diverse fields, including medical image analysis, financial market prediction, and signal processing, by enabling efficient analysis of large, unlabeled datasets and reducing reliance on expensive manual labeling.
Papers
DURableVS: Data-efficient Unsupervised Recalibrating Visual Servoing via online learning in a structured generative model
Nishad Gothoskar, Miguel Lázaro-Gredilla, Yasemin Bekiroglu, Abhishek Agarwal, Joshua B. Tenenbaum, Vikash K. Mansinghka, Dileep George
Trained Model in Supervised Deep Learning is a Conditional Risk Minimizer
Yutong Xie, Dufan Wu, Bin Dong, Quanzheng Li