Dynamic Environment
Dynamic environment research focuses on enabling robots and autonomous systems to effectively navigate and operate in unpredictable, changing surroundings. Current research emphasizes robust perception and planning algorithms, often incorporating deep reinforcement learning, model predictive control, and advanced mapping techniques like implicit neural representations and mesh-based methods, to handle moving obstacles and uncertain conditions. These advancements are crucial for improving the safety and efficiency of robots in diverse applications such as autonomous driving, aerial robotics, and collaborative human-robot interaction, ultimately leading to more reliable and adaptable autonomous systems.
Papers
AgentDojo: A Dynamic Environment to Evaluate Prompt Injection Attacks and Defenses for LLM Agents
Edoardo Debenedetti, Jie Zhang, Mislav Balunović, Luca Beurer-Kellner, Marc Fischer, Florian Tramèr
Situational Instructions Database: Task Guidance in Dynamic Environments
Muhammad Saif Ullah Khan, Sankalp Sinha, Didier Stricker, Muhammad Zeshan Afzal