Open World
Open-world research focuses on developing AI systems capable of operating in unpredictable, dynamic environments with unknown objects and situations, unlike traditional closed-world systems with predefined constraints. Current research emphasizes robust generalization and zero-shot capabilities, often employing vision-language models (VLMs), large language models (LLMs), and novel algorithms like contrastive learning and self-supervised learning to handle unseen data and concepts. This work is crucial for advancing AI's real-world applicability, particularly in robotics, autonomous driving, and other safety-critical domains requiring adaptability and resilience to unexpected events.
Papers
Ghost in the Minecraft: Generally Capable Agents for Open-World Environments via Large Language Models with Text-based Knowledge and Memory
Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, Jifeng Dai
Fairness Continual Learning Approach to Semantic Scene Understanding in Open-World Environments
Thanh-Dat Truong, Hoang-Quan Nguyen, Bhiksha Raj, Khoa Luu