Vessel Segmentation
Vessel segmentation, the automated identification of blood vessels in medical images, aims to improve diagnostic accuracy and streamline clinical workflows. Current research heavily utilizes deep learning, particularly U-Net and transformer-based architectures, often incorporating shape priors, multi-task learning, and contrastive learning strategies to enhance segmentation accuracy, especially for small or poorly defined vessels. This work is crucial for various applications, including surgical planning, disease diagnosis (e.g., coronary artery disease, cerebrovascular diseases), and treatment monitoring, ultimately improving patient care and accelerating medical research. Challenges remain in handling image noise, variability across modalities and patients, and the need for large, high-quality annotated datasets.
Papers
Simulation-Based Segmentation of Blood Vessels in Cerebral 3D OCTA Images
Bastian Wittmann, Lukas Glandorf, Johannes C. Paetzold, Tamaz Amiranashvili, Thomas Wälchli, Daniel Razansky, Bjoern Menze
Cross-domain and Cross-dimension Learning for Image-to-Graph Transformers
Alexander H. Berger, Laurin Lux, Suprosanna Shit, Ivan Ezhov, Georgios Kaissis, Martin J. Menten, Daniel Rueckert, Johannes C. Paetzold