Wild Challenge
"Wild" in machine learning research refers to the challenge of applying models trained on curated datasets to real-world, unstructured data, characterized by noise, variability, and ambiguity. Current research focuses on adapting existing models (like NeRFs, transformers, and convolutional networks) and developing new architectures to handle this complexity, often incorporating techniques like contrastive learning, multimodal fusion, and test-time adaptation. This research is crucial for bridging the gap between laboratory settings and practical applications, improving the robustness and reliability of AI systems in diverse and unpredictable environments. The ultimate goal is to create more generalizable and robust AI systems capable of functioning effectively in the real world.
Papers
Step length measurement in the wild using FMCW radar
Parthipan Siva, Alexander Wong, Patricia Hewston, George Ioannidis, Dr. Jonathan Adachi, Dr. Alexander Rabinovich, Andrea Lee, Alexandra Papaioannou
Demonstrating Mobile Manipulation in the Wild: A Metrics-Driven Approach
Max Bajracharya, James Borders, Richard Cheng, Dan Helmick, Lukas Kaul, Dan Kruse, John Leichty, Jeremy Ma, Carolyn Matl, Frank Michel, Chavdar Papazov, Josh Petersen, Krishna Shankar, Mark Tjersland